Selection and Characterization of Sethoxydim- Tolerant Maize Tissue Cultures
- 1 April 1990
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 92 (4) , 1220-1225
- https://doi.org/10.1104/pp.92.4.1220
Abstract
''Black Mexican Sweet'' (BMS) maize (Zea mays L.) tissue cultures were selected for tolerance of sethoxydim. Dethoxydim, a cyclohexanedione, and haloxyfop, and aryloxyphenoxypropionate, exert herbicidal activity on most monocots including maize by inhibiting acetyl-coenzyme A carboxylase (ACCase). Selected line B10S grew on medium containing 10 micromolar sethoxydim. Lines B50S and B100S were subsequent selections from B10S that grew on medium containing 50 and 100 micromolar sethoxydim, respectively. Growth rates of BMS, B10S, B50S, and B100S were similar in the absence of herbicide. Herbicide concentrations reducing growth by 50% were 0.6, 4.5, 35, and 26 micromolar sethoxydim and 0.06, 0.5, 5.4, and 1.8 micromolar haloxyfop for BMS, B10S, B50S, and B100S, respectively. Sethoxydim and haloxyfop concentrations that inhibited ACCase by 50% were similar for BMS, B10S, B50S, and B100S. However, ACCase activities were 6.1, 10.7, 16.1, and 11.4 nmol HCO3- incorporated per milligram of portein per minute in extracts of BMS, B10S, B50S, and B100S, respectively, suggesting that increased wild-type ACCase activity conferred herbicide tolerance. Incorporation of [14C]acetate into the nonpolar lipid fraction was higher for B50S than for BMS in the absence of sethoxydim providing further evidence for an increase in ACCase activity in the selected line. In the presence of 5 micromolar sethoxydim, [14C]acetate incorporation by B50S was similar to that for untreated BMS. The levels of a biotin-containing polypeptide (about 220,000 molecular weight), presumably the ACCase subunit, were increased in the tissue cultures that exhibited elevated ACCase activity indicating overproduction of the ACCase enzyme.This publication has 27 references indexed in Scilit:
- Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible HostsPlant Physiology, 1989
- Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicidesArchives of Biochemistry and Biophysics, 1988
- Cyclohexanedione Herbicides Are Selective and Potent Inhibitors of Acetyl-CoA Carboxylase from GrassesPlant Physiology, 1988
- Inhibition of Acetyl-CoA Carboxylase Activity by Haloxyfop and TralkoxydimPlant Physiology, 1988
- Inhibition of plant acetyl-coenzyme a carboxylase by the herbicides sethoxydim and haloxyfopBiochemical and Biophysical Research Communications, 1987
- Engineering Herbicide Tolerance in Transgenic PlantsScience, 1986
- Selection and Characterization of a Carrot Cell Line Tolerant to GlyphosatePlant Physiology, 1984
- Tissue Distribution of Acetyl-Coenzyme A Carboxylase in LeavesPlant Physiology, 1984
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970