Localization of the K+ Lock-in and the Ba2+ Binding Sites in a Voltage-Gated Calcium-Modulated Channel
Open Access
- 1 September 1999
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 114 (3) , 365-376
- https://doi.org/10.1085/jgp.114.3.365
Abstract
Using Ba2+ as a probe, we performed a detailed characterization of an external K+ binding site located in the pore of a large conductance Ca2+-activated K+ (BKCa) channel from skeletal muscle incorporated into planar lipid bilayers. Internal Ba2+ blocks BKCa channels and decreasing external K+ using a K+ chelator, (+)-18-Crown-6-tetracarboxylic acid, dramatically reduces the duration of the Ba2+-blocked events. Average Ba2+ dwell time changes from 10 s at 10 mM external K+ to 100 ms in the limit of very low [K+]. Using a model where external K+ binds to a site hindering the exit of Ba2+ toward the external side (Neyton, J., and C. Miller. 1988. J. Gen. Physiol. 92:549–568), we calculated a dissociation constant of 2.7 μM for K+ at this lock-in site. We also found that BKCa channels enter into a long-lasting nonconductive state when the external [K+] is reduced below 4 μM using the crown ether. Channel activity can be recovered by adding K+, Rb+, Cs+, or NH4 + to the external solution. These results suggest that the BKCa channel stability in solutions of very low [K+] is due to K+ binding to a site having a very high affinity. Occupancy of this site by K+ avoids the channel conductance collapse and the exit of Ba2+ toward the external side. External tetraethylammonium also reduced the Ba2+ off rate and impeded the channel from entering into the long-lasting nonconductive state. This effect requires the presence of external K+. It is explained in terms of a model in which the conduction pore contains Ba2+, K+, and tetraethylammonium simultaneously, with the K+ binding site located internal to the tetraethylammonium site. Altogether, these results and the known potassium channel structure (Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. Science. 280:69–77) imply that the lock-in site and the Ba2+ sites are the external and internal ion sites of the selectivity filter, respectively.Keywords
This publication has 41 references indexed in Scilit:
- The Structure of the Potassium Channel: Molecular Basis of K + Conduction and SelectivityScience, 1998
- Regulation of mammalian Shaker‐related K+ channels: evidence for non‐conducting closed and non‐conducting inactivated statesThe Journal of Physiology, 1998
- Interaction of internal Ba2+ with a cloned Ca(2+)-dependent K+ (hslo) channel from smooth muscle.The Journal of general physiology, 1996
- Calcium-activated potassium channels expressed from cloned complementary DNAsPublished by Elsevier ,1992
- Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channelBiophysical Journal, 1992
- Potassium blocks barium permeation through a calcium-activated potassium channel.The Journal of general physiology, 1988
- Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells.The Journal of general physiology, 1984
- Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions.The Journal of general physiology, 1983
- Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle.Proceedings of the National Academy of Sciences, 1982
- Survival of K+ permeability and gating currents in squid axons perfused with K+-free media.The Journal of general physiology, 1979