A non-linear instability theory for a wave system in plane Poiseuille flow
- 28 July 1971
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 48 (3) , 529-545
- https://doi.org/10.1017/s0022112071001733
Abstract
The initial-value problem for linearized perturbations is discussed, and the asymptotic solution for large time is given. For values of the Reynolds number slightly greater than the critical value, above which perturbations may grow, the asymptotic solution is used as a guide in the choice of appropriate length and time scales for slow variations in the amplitude A of a non-linear two-dimensional perturbation wave. It is found that suitable time and space variables are εt and ε½(x+a1rt), where t is the time, x the distance in the direction of flow, ε the growth rate of linearized theory and (−a1r) the group velocity. By the method of multiple scales, A is found to satisfy a non-linear parabolic differential equation, a generalization of the time-dependent equation of earlier work. Initial conditions are given by the asymptotic solution of linearized theory.Keywords
This publication has 4 references indexed in Scilit:
- Growth of Disturbances in Both Space and TimePhysics of Fluids, 1968
- Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim TaylorproblemArchive for Rational Mechanics and Analysis, 1966
- Studies in Non-Linear Stability TheoryPublished by Springer Nature ,1965
- The Stability of Plane Poiseuille FlowPhysical Review B, 1953