Automatic Recognition by Gait

Abstract
Recognizing people by gait has a unique advantage over other biometrics: it has potential for use at a distance when other biometrics might be at too low a resolution, or might be obscured. The current state of the art can achieve over 90% identification rate under situations where the training and test data are captured under similar conditions, while recognition rates with change of clothing, shoe, surface, illumination, and pose usually decrease performance and are the subject of much of the current study. Recognition can be achieved on outdoor data with uncontrolled illumination and at a distance when other biometrics could not be used. We shall show how this position has been achieved, covering most approaches to recognition by gait and the databases on which performance has been evaluated. We shall describe the context of these approaches, show how recognition by gait can be achieved and how current limits on performance are understood. We shall describe results on the most popular database, showing how recognition can handle some of the covariates that can affect recognition. We shall also investigate the supporting literature for this research, since the notion that people can be recognized by gait has support not only in medicine and biomedicine, and also in literature and psychology and other areas. In this way, we shall show that this new biometric has capability and research and application potential in other domains

This publication has 40 references indexed in Scilit: