Recovery of in vitro functional activity of platelet concentrates stored at 4 ° C and treated with second‐messenger effectors

Abstract
The potential for bacterial contamination limits the storage of platelets at 22 degrees C to 5 days. Refrigerated storage at 4 degrees C would abrogate this problem but would also result in a rapid loss of in vitro viability and functional activity and in vivo viability. The inhibition of platelets during storage by a combination of specific, reversible, second-messenger effectors has been investigated to allow prolonged storage at 4 degrees C with significant retention of in vitro viability and functional activity. The combination of effectors was added directly to platelet concentrates, and this step was followed by storage at 4 degrees C. Control units were incubated at 4 degrees C without the effectors and at 22 degrees C according to standard blood-banking techniques. At 1, 5, and 9 days, the units were tested for recovery of cell number, recovery of in vitro functional activity and viability, and expression of platelet surface markers. Treated platelets stored at 4 degrees C for 9 days, while spherical in shape, displayed no loss of cell number and had a recovery of viability and functional activity, as compared with control platelets stored at 22 degrees C for 5 days, as follows: ADP and collagen aggregation responses of 250 and 100 percent, respectively; a 70-percent recovery of hypotonic shock response; and a 60-percent recovery of extent of shape change. The treated platelets also expressed an equivalent amount of the surface marker glycoprotein lb and a lower amount of the activation marker alpha-granule membrane protein-140 on the membrane surface. Second-messenger effectors added to platelets significantly maintained in vitro functional activity with storage at 4 degrees C. In vitro analysis demonstrates the potential for extended 4 degrees C storage of platelets with numerical and functional recovery comparable to that achieved with current methods. Refrigerated storage of platelet concentrates has the potential to reduce the risk of bacterial contamination.