Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart

Abstract
To better understand the decreased chronotropic response to catecholamines in chronic hypoxia, we compared the inhibitory pathways regulating adenylate cyclase in rats exposed for 30 days to hypobaric hypoxia (380 Torr; HX) with those in control rats (CT) by the analysis of adenosinergic A1-receptors (8-cyclopentyl-1,3-[3H]dipropylxanthine) and muscarinic M2-receptors ([3H]quinuclidinyl benzilate). A1-receptor density was decreased by 46% in sarcolemmal preparations without a change in the affinity for agonist [(R)-phenylisopropyladenosine]. M2-receptor density was increased (HX: 280 +/- 16 fmol/mg, CT: 188 +/- 15 fmol/mg; n = 7; P < 0.001) without a change in dissociation constant. Displacement of [3H]quinuclidinyl benzilate by carbachol indicated significant decreases in the dissociation constants of both superhigh- (HX: 73 +/- 19 nM, CT: 182 +/- 42 nM; P < 0.001) and high-affinity binding sites (HX: 4 +/- 1 microM, CT: 12 +/- 3 microM; P < 0.001). Our data show that chronic hypoxia leads to differential modulation of cardiac receptors with a downregulation of adenosine receptors and increases in muscarinic receptor affinity and density, which may contribute to the blunted responsiveness of the heart to catecholamines.

This publication has 0 references indexed in Scilit: