Evaluation of startup and operation of four anaerobic processes treating a synthetic meat waste

Abstract
Two continuous stirred tanks reactors (CSTR) and four anaerobic fluidized bed reactors (AFBR) were used to study the treatment of a synthetic meat waste during single-and two-stage anaerobic treatment. Four configurations were investigated; a single-stage CSTR and AFBR and the two-stage systems CSTR–AFBR and AFBR–AFBR. Startup of the anaerobic reactors was achieved within 50 days by use of a regime that included stepped increases in influent COD, methanol substitution of the substrate, and addition of essential trace metals such as cobalt and nickel. Two-stage reactors removed up to 85% of influent COD concentrations of 5000 mg/L, whereas the single-stage AFBR and CSTR removed 76 and 9%, respectively. The proportion of methane in the effluent gases increased as the influent COD concentration was increased. Volumetric production of methane was greatest for the first stage of the AFBR–AFBR system. Solids retention times calculated for the AFBRs ranged from 7 to 12 days, sufficient to support methanogenesis. The AFBRs and two-stage systems were more resistant to an influent pH shock from the operating value of pH 6.8 down to pH 3 than the CSTRs and single-stage reactors. It was concluded that high-rate anaerobic treatment systems were applicable to meat industry wastewaters and that two-stage digestion produced a better quality effluent.