Different Effects of Point Mutations within the B-Raf Glycine-Rich Loop in Colorectal Tumors on Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase and Nuclear Factor κB Pathway and Cellular Transformation

Abstract
Recently, mutations in the B-Raf gene have been identified in a variety of human cancers, such as melanoma and colorectal carcinoma, and more than 80% of the B-Raf mutations have been V599E. Although other mutations have been reported, their functional consequences are poorly understood. In our earlier study, we demonstrated that colon tumor-associated B-Raf mutations within the kinase activation segment are not necessarily associated with an increase in mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/Erk) or nuclear factor κB (NFκB) signaling activity or in NIH3T3-transforming ability [T. Ikenoue et al., Cancer Res., 63: 8132–8137, 2003]. In this study, we examined the effect of colon tumor-associated mutations within the B-Raf glycine-rich loop (G loop) on MEK/Erk and NFκB signaling and on the transformation of NIH3T3 fibroblasts or IEC-6 intestinal epithelial cells. Of the six G loop mutations examined, only the B-Raf G468A significantly increased MEK/Erk and NFκB signaling and NIH3T3 transformation. Only this mutation induced transformed phenotypes of IEC-6 cells. In contrast, the B-Raf G468E mutation significantly decreased MEK/Erk signaling and NIH3T3 transformation and had no effect on NFκB signaling. The B-Raf F467C mutation moderately elevated MEK/Erk signaling and NIH3T3 transformation. The other three B-Raf mutations, R461I, I462S, and G463E, did not increase MEK/Erk or NFκB signaling or NIH3T3 transformation. Except for F467C, none of the tumors with B-Raf mutations examined in this study had K-Ras mutations. These results suggest that some of the B-Raf G loop mutations reported in colorectal tumors do not increase kinase or transforming activities but might contribute to carcinogenesis via other mechanisms or be irrelevant to carcinogenesis.