A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs

Abstract
Pulsatile pressure and flow were measured in the ascending aorta and other arteries of 22 anesthetized rabbits and 16 anesthetized guinea pigs. Pressure/flow relationships were expressed as vascular impedance. Aortic flow waves were almost identical in the two species, but pressure waves were quite different. Reflected pressure waves returned earlier from the periphery in guinea pigs, augmenting pressure during late systole and resulting in relatively high external left ventricular work, an inappropriately larger difference between mean systolic and mean diastolic pressure and absence of any aortic diastolic pressure wave. Values of impedance modulus and phase were similar but differed in the frequency at which maxima and minima occurred. In both species, impedance curves were interpreted to indicate a functionally discrete reflecting site in the lower body whose position corresponded to the region of the aortic bifurcation. In addition, rabbits showed evidence of an upper body reflecting site approximately one-third as far distant from the heart. As in dogs, the arterial system in both species can be represented by an asymmetrical T-shaped model of realistic dimensions.