Abstract
A new method for generating X-Y separable, steerable, scalable approximations of filter kernels is proposed which is based on a generalization of the singular value decomposition (SVD) to three dimensions. This "pseudo-SVD" improves upon a previous scheme due to Perona (1992) in that it reduces convolution time and storage requirements. An adaptation of the pseudo-SVD is proposed to generate steerable and scalable kernels which are suitable for use with a Laplacian pyramid. The properties of this method are illustrated experimentally in generating steerable and scalable approximations to an early vision edge-detection kernel.

This publication has 8 references indexed in Scilit: