A "horizon adapted" approach to the study of relativistic accretion flows onto rotating black holes

Abstract
We present a new geometrical approach to the study of accretion flows onto rotating (Kerr) black holes. Instead of Boyer-Lindquist coordinates, the standard choice in all existing numerical simulations in the literature, we employ the simplest example of a horizon adapted coordinate system, the Kerr-Schild coordinates. This choice eliminates boundary ambiguities and unphysical divergent behavior at the event horizon. Computations of Bondi-Hoyle accretion onto extreme Kerr black holes, performed here for the first time, demonstrate the key advantages of this procedure. We argue it offers the best approach to the numerical study of the, observationally, increasingly more accesible relativistic inner region around black holes.

This publication has 0 references indexed in Scilit: