Abstract
Owing to its numerical simplicity, a two-dimensional two-electron model atom, with each electron moving in one direction, is an ideal system to study non-perturbatively a fully correlated atom exposed to a laser field. Frequently made assumptions, such as the ``single active electron''- approach and calculational approximations, e.g. time dependent density functional theory or (semi-) classical techniques, can be tested. In this paper we examine the multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\ double ionization at lower field strengths as expected from a sequential, single active electron-point of view. Since we find non-sequential ionization also in purely classical simulations, we are able to clarify the mechanism behind this effect in terms of single particle trajectories. PACS Number(s): 32.80.Rm

This publication has 0 references indexed in Scilit: