Abstract
The number of different connected graphs (with some property P) on n labelled nodes with q edges is fnq. Again Fnq is the number of graphs on n labelled nodes with q edges, each of whose connected components has property P. We consider 8 types of graph for which . We use a known relation between the generating functions of fnq and Fnq to find an asymptotic expansion of fnq in terms of binomial coefficients, valid if (q – ½n log n)/n→∞ as n→∞. This condition is also necessary for the existence of an asymptotic expansion of this kind.

This publication has 2 references indexed in Scilit: