Complex Curve of the Two Matrix Model and its Tau-function

  • 25 November 2002
Abstract
We study the hermitean and normal two matrix models in planar approximation for an arbitrary number of eigenvalue supports. Its planar graph interpretation is given. The study reveals a general structure of the underlying analytic complex curve, different from the hyperelliptic curve of the one matrix model. The matrix model quantities are expressed through the periods of meromorphic generating differential on this curve and the partition function of the multiple support solution, as a function of filling numbers and coefficients of the matrix potential, is shown to be the quasiclassical tau-function. The relation to softly broken N=1 supersymmetric Yang-Mills theories is discussed. A general class of solvable multimatrix models with tree-like interactions is considered.

This publication has 0 references indexed in Scilit: