Soil ingestion in children: Outdoor soil or indoor dust?

Abstract
Soil ingestion estimates may play a prominent role in exposure estimation for risk assessments involving tightly bound soil contaminants such as dioxin, PCBs, and lead in soil. Since contamination is often localized to specific areas, the relative contribution of ingested soil due to outdoor soil and indoor dust may have a large impact on the risk assessment. This article examines data on 64 preschool children over 2 weeks to estimate the relative contribution of ingested soil from outdoor soil and indoor dust. Four principal methodological approaches are developed and presented to form the estimates, and their relative strengths and weaknesses are discussed. The four approaches differ in their assumptions and their ability to detail differences in ingestion source. Two approaches (i.e., duration correlation method — approach 1 and group tracer ratio method — approach 2) were used that can only estimate the average ingestion source, where averages are calculated over subjects and weeks. Both of these approaches have sufficient limitations to preclude confidence in the resulting estimates. The final two approaches (approach 3 — individual tracer ratio method and approach 4 — multiple statistical model method) were able to characterize ingestion source for individual subject‐weeks and offered more plausible estimates of soil ingestion. Greater emphasis is placed on approach 3 since it was biologically plausible and conceptually straightforward. Approach 3 indicated that 49.2% ± 29.2% of the residual fecal tracers were estimated to be of soil origin. These findings, which represent the first quantitative differentiation of soil vs. dust ingestion, have considerable application for a variety of environmental settings requiring exposure assessment.