Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumor cells using sequential mass spectrometry

Abstract
In an effort to understand the role of molecular glycosylation in cancer a murine model has been used to characterize and fingerprint malignancies in established cell lines that manifest all the hallmarks of metastatic disease: spontaneous development, local invasion, intravasation, immune system survival, extravasation, and secondary tumor formation involving liver, kidney, spleen, lung, and brain. Using astrocyte cell controls, we compared N-linked glycosylation from a nonmetastatic brain tumor cell line and two different metastatic brain tumor cells. Selected ions in each profile were disassembled by ion trap mass spectrometry (MSn) which exhibited multiple structural differences between each tissue. These unique structures were identified within isomeric compositions as pendant nonreducing termini of di- and trisaccharide fragments, probably transparent to a tandem MS approach but distinctively not to sequential ion trap MSn detection.