Stabilized Finite Element Formulations for Shells in a Bending Dominated State
- 1 January 1998
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Numerical Analysis
- Vol. 36 (1) , 32-73
- https://doi.org/10.1137/s0036142996302918
Abstract
International audienceWe consider the design of finite element methods for the Naghdi shell model in the case when the deformation is bending dominated. Two formulations based on stabilizing techniques are introduced and it is proved that they are stable, hence free from locking. The theoretical estimates are confirmed by numerical benchmark studiesKeywords
This publication has 30 references indexed in Scilit:
- A locking-free approximation of curved rods by straight beam elementsNumerische Mathematik, 1997
- Finite element analysis of shell structuresArchives of Computational Methods in Engineering, 1997
- Locking-free finite element methods for shellsMathematics of Computation, 1997
- On the locking phenomenon for a class of elliptic problemsNumerische Mathematik, 1994
- Mixed finite element methods for elastic rods of arbitrary geometryNumerische Mathematik, 1993
- ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATESMathematical Models and Methods in Applied Sciences, 1991
- A Uniformly Accurate Finite Element Method for the Reissner–Mindlin PlateSIAM Journal on Numerical Analysis, 1989
- Mixed‐interpolated elements for Reissner–Mindlin platesInternational Journal for Numerical Methods in Engineering, 1989
- Discretization by finite elements of a model parameter dependent problemNumerische Mathematik, 1981
- Théorème d'existence et d'unicité pour un problème de coque élastique dans le cas d'un modèle linéaire de P. M. NaghdiRAIRO. Analyse numérique, 1978