Enhanced Resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 Mutant Is Mediated via an SA-Independent Mechanism

Abstract
The Arabidopsis thaliana SSI2 gene encodes a plastid-localized stearoyl-ACP desaturase. The recessive ssi2 mutant allele confers constitutive accumulation of the pathogenesis-related-1 (PR-1) gene transcript and salicylic acid (SA), and enhanced resistance to bacterial and oomycete pathogens. In addition, the ssi2 mutant is a dwarf and spontaneously develops lesions containing dead cells. Here, we show that the ssi2 mutant also confers enhanced resistance to Cucumber mosaic virus (CMV). Compared with the wild-type plant, viral multiplication and systemic spread were diminished in the ssi2 mutant plant. However, unlike the ssi2-conferred resistance to bacterial and oomycete pathogens, the ssi2-conferred enhanced resistance to CMV was retained in the SA-deficient ssi2 nahG plant. In addition, SA application was not effective in limiting CMV multiplication and systemic spread in the CMV-susceptible wild-type plant. The acd1, acd2, and cpr5 mutants which, like the ssi2 mutant, accumulate elevated SA levels, c...

This publication has 59 references indexed in Scilit: