X-ray spectral features from GRBs: Predictions of progenitor models

Abstract
We investigate the potentially observable prompt or delayed X-ray spectral features from the currently popular gamma-ray burst (GRB) models. During the evolution of many GRB progenitors, a disk around the central GRB source is produced. Shock heating as the GRB ejecta collide with the disk may produce observable X-ray features. We first summarize predictions deduced from previous calculations which invoke photoionization and relativistic blast waves. We then calculate the quasi-thermal X-ray line features produced assuming the ejecta are nonrelativistic (which is more likely for the disk interactions of many GRB models). In the framework of the Hypernova/Collapsar model, delayed (a few days - several months after the GRB) bursts of line-dominated, thermal X-ray emission may be expected. The He-merger scenario predicts similar X-ray emission line bursts <~ a few days after the GRB. These X-ray signatures should be observable with Chandra and XMM-Newton out to at least z ~ 1. Weak emission line features <~ a few days after the GRB may also result from the supranova GRB scenario. In all three cases, significant X-ray absorption features, in particular during the prompt GRB phase, are expected. No significant X-ray spectral features might result from compact-object binary mergers.

This publication has 0 references indexed in Scilit: