Effect of Soil Plasticity on Cyclic Response

Abstract
A study on the influence of the plasticity index (PI) on the cyclic stress‐strain parameters of saturated soils needed for site‐response evaluations and seismic microzonation is presented. Ready‐to‐use charts are included, showing the effect of PI on the location of the modulus reduction curve G/Gmax versus cyclic shear strain γc, and on the material damping ratio λ versus γc curve. The charts are based on experimental data from 16 publications encompassing normally and overconsolidated clays (OCR=1-15), as well as sands. It is shown that PI is the main factor controlling G/Gmax and λ for a wide variety of soils; if for a given γc PI increases, G/Gmax rises and λ is reduced. Similar evidence is presented showing the influence of PI on the rate of modulus degradation with the number of cycles in normally consolidated clays. It is concluded that soils with higher plasticity tend to have a more linear cyclic stress‐strain response at small strains and to degrade less at larger γc than soils with a lower PI. ...

This publication has 20 references indexed in Scilit: