Stem Cell Factor Regulates the Melanocyte Cytoskeleton

Abstract
Stem cell factor is a growth factor for normal human melanocytes, that acts through the tyrosine kinase receptor c‐kit. We have previously demonstrated that stem cell factor increases melanocyte adhesion and migration on fibronectin, and regulates integrin protein expression. In this report, we have characterized the effect of stem cell factor on the organization of the actin cytoskeleton in human melanocytes attached to fibronectin, and have examined the effect of stem cell factor on the phosphorylation of the focal contact protein paxillin and on the expression of the focal contact proteins talin, paxillin, vinculin, and α‐actinin. Paxillin is a vinculin‐binding protein that is a substrate of focal adhesion kinase, a nonreceptor tyrosine kinase, and in its phosphorylated form is believed to stabilize focal contacts. We show that stem cell factor induces a rapid increase in actin stress fiber formation in melanocytes, which can be abrogated by genistein, a tyrosine kinase inhibitor, and that stem cell factor induces phosphorylation of paxillin on tyrosine residues. In contrast, stem cell factor did not regulate expression of any of the four focal contact proteins tested. These findings have implications for the models describing the mechanisms of action of stem cell factor on melanocyte adhesion and migration, and suggest that reorganization of the cytoskeleton is a primary effect of stem cell factor on human melanocytes.