The mechanism of the enhancement of the fluorescence of ethidium bromide on binding to double helical RNA and DNA has been investigated. From an examination of the effect of different solvents on the fluorescence lifetime, quenching of fluorescence by proton acceptors, and the substantial lengthening of lifetime observed upon deuteration of the amino protons, regardless of the medium, we conclude that proton transfer from the excited singlet state is the process primarily responsible for the approximately equal to 3.5-fold increase in the lifetime of free ethidium bromide in going from H2O to D2O; the fact that addition of small amounts of water to nonaqueous solvents decreases the fluorescence whereas addition of small amounts of D2O enhances the fluorescence; and the enhancement of the ethidium bromide triplet state yield on binding to DNA. Other proposed mechanisms are shown to be inconsistent with our findings.