Abstract
Metal matrix composites are produced by several contrasting manufacturing techniques and in many different shapes and forms. Solid state processing routes are generally favoured for putative aerospace applications, whereas liquid metal routes appear more promising for automobile applications. Both groups of production routes can accommodate reinforcements of continuous fibre, short fibre, particulate and hybrid fibre-particulate types and the reinforcement phase can be distributed uniformly throughout the composite structure or, using preform technology, in selected regions of the casting. The greatest problem arising during manufacture and during post-production thermal processing of MMCs is that of chemical instability of the constituent phases. Thermodynamic incompatibilities restrict the use of certain manufacturing routes for specific composite couples and limit the working environment of others. Commercial aspects of MMC production, either directly to near net shape or by subsequent machining, indicate high cost penalties for specific limited gains. The mechanical properties of MMCs are inevitably a compromise between the properties of the matrix and reinforcement phases. In particular, ductility and toughness are frequently sacrificed for higher modulus. Measures to improve toughness whilst maintaining stiffness are being explored. Wear properties of MMCs are extremely good; machinability, on the other hand, can be poor.

This publication has 0 references indexed in Scilit: