Abstract
Herein, the dimerisation of subvalent, binary, main‐group element hydrides with the potential for multiple bonding is studied using both hybrid DFT (B3LYP) and ab initio [MP2 and CCSD(T)] methods. The [2+2] cycloaddition is an important and characteristic reaction of derivatives of ethylene. A comparison of dimerisation reactions for several compounds with the potential for multiple bonding should, therefore, shed light on the properties of these species. Our study includes the hydrides E2H2 (E = B, Al, Ga, N P or As), E2H4 (E = C, Si or Ge) and ENH4 (E = B, Al or Ga) and their dimers. Several isomeric forms of the monomers and dimers have to be considered. The trends within a group and a period are established and the factors responsible for them are discussed. It turns out that, generally, the enthalpies for dimerisation increase for heavier homologues, reflecting that the most important factor is the reduced strength of the E−E bonds in the monomers prior to dimerisation and, to some degree, also the reduced ring strain in the cyclic dimers. The exceptions are the dimerisations of B2H2 and Al2H2, both of which lead to the tetrahedral E4H4 species (E = B or Al). Dimerisation of Al2H2 is associated with a smaller enthalpy than that for the dimerisation of B2H2. Comparisons and analyses are made complicated because of the changes in the structures of the isomeric global minima between homologues. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)