Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase.
Open Access
- 1 March 1996
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 8 (3) , 519-527
- https://doi.org/10.1105/tpc.8.3.519
Abstract
Nitrate reductase (NR) is rapidly inactivated by phosphorylation of serine residues in response to loss of light or reduction in CO2 levels. To identify sites within NR protein that play a role in this post-translational regulation, a heterologous expression system and an in vitro inactivation assay for Arabidopsis NR were developed. Protein extracts containing NR kinases and inhibitor proteins were prepared from an NR-defective mutant that had lesions in both the NIA1 and NIA2 NR genes of Arabidopsis. Active NR protein was produced in a Pichia pastoris expression system. Incubation of these two preparations resulted in a Mg-ATP-dependent inactivation of NR that was reversed with EDTA. Mutant forms of NR were constructed, produced in P. pastoris, and tested in the in vitro inactivation assay. Six conserved serine residues in the hinge 1 region of NR, which separates the molybdenum cofactor and heme domains, were specifically targeted for mutagenesis because they are located in a potential regulatory region identified as a target for NR kinases in spinach. A change in Ser-534 to aspartate was found to block NR inactivation; changes in the other five serines had no effect. The aspartate that replaced Ser-534 did not appear to mimic a phosphorylated serine but simply prevented the NR from being inactivated. These results identify Ser-534, located in the hinge 1 of NR and conserved among higher plants NRs, as an essential site for post-translational regulation in vitro.Keywords
This publication has 29 references indexed in Scilit:
- Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase.Plant Cell, 1996
- Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion.Plant Cell, 1995
- A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia.Proceedings of the National Academy of Sciences, 1994
- Phosphorylation of Ser871 impairs the function of His865 of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase.1994
- THE MOLECULAR GENETICS OF NITRATE ASSIMILATION IN FUNGI AND PLANTSAnnual Review of Genetics, 1993
- Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2Molecular Genetics and Genomics, 1993
- Expression and characterization of the heme-binding domain of Chlorella nitrate reductase.Journal of Biological Chemistry, 1993
- Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNAPlant Physiology, 1992
- Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark TransitionPlant Physiology, 1992
- Rapid Modulation of Spinach Leaf Nitrate Reductase Activity by PhotosynthesisPlant Physiology, 1991