Plasma Levels of Extracellular Superoxide Dismutase in an Australian Population

Abstract
—Extracellular superoxide dismutase (EC-SOD) is a major superoxide scavenger and may be important to normal vascular function and cardiovascular health. We analyzed family data from 610 healthy Australians to detect and quantify the effects of genes on normal variation in plasma levels of EC-SOD and to test for pleiotropy with plasma nitric oxide (NO) and apolipoprotein A-I (apoA-I). Using maximum-likelihood–based variance decomposition methods, we determined that sex, age, and plasma levels of HDL cholesterol, apoA-I, and creatinine accounted for 38.6% of the variance in plasma EC-SOD levels and that additive genes accounted for 35% (P33% of the genetic variance and 5% and 15% of the respective phenotypic variance in NOx and apoA-I. In healthy individuals, over a third of the variance in EC-SOD plasma levels is due to the additive effects of genes. Some genes influence EC-SOD and apoA-I levels. The same is true of NOx and apoA-I but not of EC-SOD and NOx. These patterns of pleiotropy can guide subsequent attempts to identify the genes and physiological mechanisms underlying them.