Crystal Structure of an Acylation Transition-State Analog of the TEM-1 β-Lactamase. Mechanistic Implications for Class A β-Lactamases
- 1 February 1998
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 37 (8) , 2622-2628
- https://doi.org/10.1021/bi972501b
Abstract
The crystal structure of a phosphonate complex of the class A TEM-1 beta-lactamase has been determined to a resolution of 2.0 A. The phosphonate appears stoichiometrically at the active site, bound covalently to Ser70Ogamma, with one phosphonyl oxygen in the oxyanion hole. Although the overall structure is very similar to that of the native enzyme (rms difference 0.37 A for all heavy atoms), changes have occurred in the position of active site functional groups. The active site is also not in the conformation observed in the complex of another class A beta-lactamase, that of Staphylococcus aureus PC1, with the same phosphonate [Chen, C. C. H., et al. (1993) J. Mol. Biol. 234,165-178]. Both phosphonate structures, however, can be seen to represent models of acylation transition-states since in each the deacylating water molecule appears firmly bound to the Glu166 carboxylate group. The major difference between the structures lies in the positioning of Lys73Nzeta and Ser130Ogamma. In the S. aureus structure, the closest interaction of these functional groups is between Lys73Nzeta and Ser70Ogamma (2.8 A), while in the TEM-1 structure it is between Ser130Ogamma and the second phosphonyl oxygen of the bound inhibitor (2.8 A). The former structure therefore may resemble a transition state for formation of the tetrahedral species in acylation by nucleophilic attack on the substrate, where Lys73Nzeta presumably catalyzes the reaction as a general base. The TEM-1 structure can then be seen as an analogue of the transition state for breakdown of the tetrahedral species, where Ser130Ogamma is acting as a general acid, assisting the departure of the leaving group. The class A beta-lactamase crystal structures now available lead to a self-consistent proposal for a mechanism of catalysis by these enzymes.Keywords
This publication has 11 references indexed in Scilit:
- The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme.Proceedings of the National Academy of Sciences, 1996
- Crystal Structure of 6α-(Hydroxymethyl)penicillanate Complexed to the TEM-1 β-Lactamase from Escherichia coli: Evidence on the Mechanism of Action of a Novel Inhibitor Designed by a Computer-Aided ProcessJournal of the American Chemical Society, 1996
- Electrostatic analysis of TEM1 β-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutationsStructure, 1995
- Molecular Dynamics Simulation of a Class A .beta.-Lactamase: Structural and Mechanistic ImplicationsJournal of the American Chemical Society, 1995
- Contribution of mutant analysis to the understanding of enzyme catalysis: The case of class A β-lactamasesBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1995
- Crystal structure of Escherichia coli TEM1 β‐lactamase at 1.8 Å resolutionProteins-Structure Function and Bioinformatics, 1993
- Crystallization and preliminary crystallographic data on Escherichia coli TEM1 β-lactamaseJournal of Molecular Biology, 1992
- Mechanism of acyl transfer by the class A serine β-lactamase of Streptomyces albus GBiochemical Journal, 1991
- MOLSCRIPT: a program to produce both detailed and schematic plots of protein structuresJournal of Applied Crystallography, 1991
- Site-directed mutagenesis of β-lactamase I. Single and double mutants of Glu-166 and Lys-73Biochemical Journal, 1990