The functions of oligosaccharide chains associated with influenza C viral glycoproteins

Abstract
Summary The effect of a glycosylation inhibitor, tunicamycin (TM) on the replication of influenza C virus was investigated. Incorporation of [3H]-glucosamine into the gp88 glycoproteins of this virus was completely inhibited by TM at the concentrations higher than 0.25 µg/ml. Under these conditions, the synthesis of internal proteins NP and M was shown in TM-treated cells but the synthesis of gp88 was not. The disappearance of gp88 was however accompanied with the appearance of two new polypeptides with molecular weights of 80,000 (T80) and 76,000 (T76). While T80 was identified by peptide mapping as a host cell protein whose synthesis was enhanced by TM, T76 was shown to correspond to a nonglycosylated form of gp88. Pulse-chase experiments revealed that there was no significant difference in the intracellular stability of T76 and gp88. Although TM depressed the production of infectious progeny virus greater than 100-fold, only a five-fold decrease was observed in the release of noninfectious physical particles, suggesting that glycosylation is not essential for the formation of influenza C virus particles. However, the virions from TM-treated cells had a lower buoyant density in isopycnic sucrose gradients and lacked surface proteins in either glycosylated or nonglycosylated form.