Brain virus burden and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus monkey are concomitantly lowered by 6-chloro-2',3'-dideoxyguanosine

Abstract
Increased kynurenine pathway metabolism has been implicated in the aetiology of lentiviral encephalopathy. Indoleamine-2,3-dioxygenase (IDO) initiates the increased production of kynurenine pathway metabolites like quinolinic acid (QUIN). QUIN itself is elevated in AIDS-diseased monkey and human brain parenchyma and cerebrospinal fluid at levels excitotoxic for neurons in vitro. This study investigates the cellular origin of IDO biosynthesis in the brain of rhesus monkeys infected with simian immunodeficiency virus (SIV) and explores the effects of CNS-permeant antiretroviral treatment. IDO transcript and protein were absent from the brain of non-infected and SIV-infected asymptomatic monkeys. IDO biosynthesis was induced in the brain of monkeys exhibiting AIDS. Nodule and multinucleated giant cell-forming macrophages were the main sources of IDO synthesis. Treatment with the lipophilic 6-chloro-2',3'-dideoxyguanosine suppressed IDO expression in the brain of AIDS-diseased monkeys. The effectiveness of this treatment was confirmed by the reduction of virus burden and SIV-induced perivascular infiltrates, mononuclear nodules and multinucleated giant cells. Our data demonstrate that brain IDO biosynthesis is induced in a subset of monocyte-derived cells, depends on viral burden and is susceptible to antiretroviral treatment. Thus, IDO induction is associated with reversible overt inflammatory events localized to areas of active viral replication in the SIV-infected brain.

This publication has 41 references indexed in Scilit: