Pulsed Laser Deposition of High Tc Superconducting Thin Films for Electronic Device Applications

Abstract
The discovery of high transition temperature, Tc, superconductivity in copperoxide-based ceramics by Bednörz and Miiller, and the subsequent increase in Tc above the boiling point of liquid nitrogen (77 K), renewed interest in employing superconducting thin films in high-speed, low-power electronic device applications (e.g., compact high-quality factor filters, delay lines, and Josephson elements for high-speed, low-power switching). However, realization of these benefits requires well-controlled, reliable superconducting thin film technology which addresses not only the growth of superconducting thin films, but also the development of a multilayer device technology encompassing materials with metallic, semiconducting, and insulating properties.