Targeting of Hepatoma Cell and Suppression of Tumor Growth by a Novel 12mer Peptide Fused to Superantigen TSST-1

Abstract
Hepatocellular carcinoma (HCC), one of the most common and malignant tumors worldwide, is unresponsive to any of the available therapies. Using intact HCC cells as therapeutic targets, we isolated a novel peptide, denoted HCC79 (KSLSRHDHIHHH), from a phage display peptide library. HCC79 can bind to hepatoma cell membranes with high affinity and specificity. Remarkably, competitive binding assays demonstrated that HCC79 competed with HAb25, a specific antibody for HCC, in binding to hepatoma cells. The corresponding synthetic peptide did not inhibit tumor proliferation directly, but repressed tumor invasion significantly in a cell migration assay. Moreover, we explored the potential of the selected peptide to deliver a superantigen (SAg) to cancer cells, to attain a significant cell-targeting effect. When the peptide is fused to the TSST-1 SAg, the resulting fusion protein could bind to hepatoma cells with high affinity in vitro and improved the tumor inhibition effect by activating T lymphocyte cells in vitro and in vivo, compared with TSST-1 alone. Taken together, our results indicate that this peptide and its future derivatives may have the potential to be developed into highly specific therapeutic agents against cancer.