Rapamycin Markedly Slows Disease Progression in a Rat Model of Polycystic Kidney Disease

Abstract
Increased tubular epithelial cell proliferation is a prerequisite for cyst formation and expansion in polycystic kidney disease (PKD). Rapamycin is a potent antiproliferative agent. The aim of the present study was to determine the effect of rapamycin on tubular cell proliferation, cyst formation, and renal failure in the Han:SPRD rat model of PKD. Heterozygous (Cy/+) and littermate control (+/+) male rats were weaned at 3 wk of age and then treated with rapamycin 0.2 mg/kg per d intraperitoneally or vehicle (ethanol) for 5 wk. Vehicle-treated Cy/+ rats had a more than doubling of kidney size compared with +/+ rats. Rapamycin reduced the kidney enlargement by 65%. Rapamycin significantly reduced the cyst volume density in Cy/+ rats by >40%. Blood urea nitrogen was 59% increased in vehicle-treated Cy/+ rats compared with +/+ rats. Rapamycin reduced the blood urea nitrogen to normal in Cy/+ rats. The number of proliferating cell nuclear antigen (PCNA)-positive cells per noncystic tubule was eightfold increased in vehicle-treated Cy/+ compared with +/+ rats. Rapamycin significantly reduced the number of PCNA-positive cells in noncystic tubules of Cy/+ rats. In addition, the number of PCNA-positive cells per cyst in Cy/+ rats was significantly reduced by rapamycin. In summary, in a rat model of PKD, rapamycin treatment (1) decreases proliferation in cystic and noncystic tubules, (2) markedly inhibits renal enlargement and cystogenesis, and (3) prevents the loss of kidney function.