Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters
Top Cited Papers
- 10 May 2004
- journal article
- research article
- Published by Wiley in Journal of Biomedical Materials Research Part B: Applied Biomaterials
- Vol. 70B (2) , 286-296
- https://doi.org/10.1002/jbm.b.30041
Abstract
Wound healing is a complex process that often requires treatment with antibiotics. This article reports the initial development of a biodegradable polymeric nanofiber-based antibiotic delivery system. The functions of such a system would be (a) to serve as a biodegradable gauze, and (b) to serve as an antibiotic delivery system. The polymer used in this study was poly(lactide-co-glycolide) (PLAGA), and nanofibers of PLAGA were fabricated with the use of the electrospinning process. The objective of this study was to determine the effect of fabrication parameters: orifice diameter (needle gauge), polymer solution concentration, and voltage per unit length, on the morphology and diameter of electrospun nanofibers. The needle gauges studied were 16 (1.19 mm), 18 (0.84 mm), and 20 (0.58 mm), and the range of polymer solution concentration studied was from 0.10 g/mL to 0.30 g/mL. The effect of voltage was determined by varying the voltage per unit electrospinning distance, and the range studied was from 0.375 kV/cm to 1.5 kV/cm. In addition, the mass per unit area of the electrospun nanofibers as a function of time was determined and the feasibility of antibiotic (cefazolin) loading into the nanofibers was also studied. The results indicate that the diameter of nanofibers decreased with an increase in needle gauge (decrease in orifice diameter), and increased with an increase in the concentration of the polymer solution. The voltage study demonstrated that the average diameter of the nanofibers decreased with an increase in voltage. However, the effect of voltage on fiber diameter was less pronounced as compared to polymer solution concentration. The results of the areal density study indicated that the mass per unit area of the electrospun nanofibers increased linearly with time. Feasibility of drug incorporation into the nanofibers was demonstrated with the use of cefazolin, a broad-spectrum antibiotic. Overall, these studies demonstrated that PLAGA nanofibers can be tailored to desired diameters through modifications in processing parameters, and that antibiotics such as cefazolin can be incorporated into these nanofibers. Therefore, PLAGA nanofibers show potential as antibiotic delivery systems for the treatment of wounds. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 70B: 286–296, 2004Keywords
This publication has 19 references indexed in Scilit:
- Experimental characterization of electrospinning: the electrically forced jet and instabilitiesPolymer, 2001
- Electrospinning process and applications of electrospun fibersPublished by Elsevier ,2000
- Use of Cefazolin Microspheres to Treat Localized Methicillin-Resistant Staphylococcus aureus Infections in RatsJournal of Surgical Research, 1999
- Beaded nanofibers formed during electrospinningPolymer, 1999
- Impediments to wound healingThe American Journal of Surgery, 1998
- WOUND INFECTIONSurgical Clinics of North America, 1997
- Nanometre diameter fibres of polymer, produced by electrospinningNanotechnology, 1996
- Evaluation of biodegradable cefazolin sodium microspheres for the prevention of infection in rabbits with experimental open tibial fractures stabilized with internal fixationJournal of Orthopaedic Research, 1993
- The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their SurfacesPhysical Review B, 1914
- XX. On the equilibrium of liquid conducting masses charged with electricityJournal of Computers in Education, 1882