Characterization of a nickel resistant mouse cell line

Abstract
Nickel is a potent carcinogen and, at high concentrations, is toxic to mammalian cells. The effects associated with nickel exposure are well-documented but its mechanism of action in the cell has not yet been fully described. In order to understand the metabolic fate of nickel in mammalian cells, a variant cell population has been selected that continues to grow and divide in the presence of nickel chloride concentrations that are toxic to the parental cell line (Balb/c-3T3 mouse fibroblasts). Nickel resistance is not caused by altered uptake of nickel from the medium or increased clearance from the cells and is not associated with changes in metallothionein expression. Compared to the normal cells, the nickel resistant cells have a decreased number of chromosomes and numerous centromeric fusions. The expression of some proteins and the distribution of nickel bound by various proteins are altered in the nickel resistant cells. Preliminary results indicate that the nickel resistant phenotype may be transferred by genomic DNA-mediated transfection into a recipient NIH-3T3 cell line. Current investigations are directed at identifying a gene responsible for nickel resistance.