Abstract
The morphological mechanisms involved in translocation of the synaptic vesicle to the presynaptic membrane, release of transmitter from the vesicle and recycling of the vesicle membrane are still far from understood. However, there is strong evidence that vesicles move along the surfaces of a specific set of highly labile presynaptic microtubules that direct the vesicles to the active zones. These microtubules are focused in a precise geometrical array, which is in register with and in contact with presynaptic dense projections of the central nervous system synapse or presynaptic dense bars of the motor endplate. These dense complexes constitute the presynaptic grid or active zones. The regular arrays of dense projections or bars are in turn coincident with rings or chains of synaptic vesicles mobilized at release sites on the presynaptic membrane (having arrived at these precise points by microtubule translocation). Thus it is suggested that the presynaptic microtubules not only translocate synaptic vesicles, but because of their ordered arrays determine, in ontogeny, the ordered structure of the presynaptic grid.

This publication has 15 references indexed in Scilit: