Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery.
- 1 March 1990
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 66 (3) , 789-803
- https://doi.org/10.1161/01.res.66.3.789
Abstract
Effects of flecainide, a potent antiarrhythmic agent, on sodium channel availability was investigated in guinea pig single cardiac cells by the whole-cell voltage-clamp technique. Sodium current (INa) experiments were performed at 17 degrees C, and maximum upstroke velocity (Vmax) experiments were performed at 37 degrees C. Flecainide (3 microM) caused little tonic block, but reduced sodium channel availability in a use-dependent manner. The latter effect was accentuated by depolarization and attenuated by hyperpolarization. Long (200-msec) and short (10-msec) depolarizations yielded similar use-dependent block. These results indicate that flecainide has a low affinity for rested (R) and inactivated (I) channels but a high affinity for activated ones (A). In each of these states, the channels can bind to drug to form the corresponding RD, ID, and AD states. Recovery from flecainide block consisted of two components. An initial fast component was strongly voltage dependent: with increasing hyperpolarization, recovery developed more quickly and to a larger extent. At 17 degrees C, the mean time constant shortened from 132 +/- 81.6 msec at -120 mV to 46.9 +/- 34.1 msec at +/- 160 mV (kinetics were too fast for accurate measurement at 37 degrees C). A later slow component was largely voltage independent: at 37 degrees C, the mean time constant was 9.8 +/- 3.2 seconds at -100 mV and 10.7 +/- 3.8 seconds at -75 mV. The slow component of recovery was similarly independent of voltage at 17 degrees C. In terms of the modulated-receptor theory, our results indicate that the fast recovery depends on availability for unblocking (RD) but occurs during activation (AD----A). Indeed, when the RD state is maximized by strong hyperpolarization, activation unblock was also maximized. However, during depolarization to -100 mV, availability for activation unblock declined with a time constant of 98 +/- 12 msec (RD----ID). Therefore, the voltage-dependent fast unblocking is mostly due to priming of the RD state (RD----ID), and the voltage-independent slow unblock reflects dissociation of flecainide from closed states (RD----R and ID----I). We conclude that flecainide interacts with sodium channels preferentially in the activated state, whereas unblocking occurs via two separate pathways: activated and closed states. Furthermore, drug association with channels shifts the voltage dependence of closed-state transitions (RD in equilibrium ID) and their kinetics toward more negative potentials.This publication has 39 references indexed in Scilit:
- Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial InfarctionNew England Journal of Medicine, 1989
- Temperature and Voltage Dependence of Sodium Channel Blocking and Unblocking by O-Demethyl Encainide in Isolated Guinea Pig MyocytesJournal of Cardiovascular Pharmacology, 1989
- Use-dependent block of sodium current by ethmozin in voltage-clamped internally perfused canine cardiac purkinje cellsJournal of Molecular and Cellular Cardiology, 1988
- Sodium current in voltage clamped internally perfused canine cardiac Purkinje cellsBiophysical Journal, 1987
- Characteristics of the time-dependent slow inward current in adult human atrial single myocytesJournal of Molecular and Cellular Cardiology, 1986
- Fundamental Properties of Local AnestheticsAnesthesia & Analgesia, 1986
- Antiarrhythmic Agents: The Modulated Receptor Mechanism of Action of Sodium and Calcium Channel-Blocking DrugsAnnual Review of Pharmacology and Toxicology, 1984
- Voltage- and time-dependent depression of maximum rate of depolarisation of guinea-pig ventricular action potentials by two new antiarrhythmic drugs, flecainide and lorcainideCardiovascular Research, 1983
- Effect of Flecainide on Action Potentials and Alternating Current-Induced Arrhythmias in Mammalian MyocardiumJournal of Cardiovascular Pharmacology, 1982
- Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channelsBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1977