Sharp Resonances in Yeast Growth Prove Nonthermal Sensitivity to Microwaves

Abstract
Microwaves near 42 GHz are found to influence the growth of Saccharomyces cerevisiae. The growth is measured photometrically in stirred aqueous culture. The microwave effect occurs and saturates above a threshold intensity < 10 mW/cm2, excluding any explanation based on microwave heating. A surprisingly strong frequency dependence is observed, with resonances as narrow as 8 MHz. These results confirm the existence of a nonthermal resonant microwave sensitivity in biology; they suggest yet unknown tuned systems triggering yet unknown biological actions.