Visual odometry for ground vehicle applications

Abstract
We present a system that estimates the motion of a stereo head, or a single moving camera, based on video input. The system operates in real time with low delay, and the motion estimates are used for navigational purposes. The front end of the system is a feature tracker. Point features are matched between pairs of frames and linked into image trajectories at video rate. Robust estimates of the camera motion are then produced from the feature tracks using a geometric hypothesize‐and‐test architecture. This generates motion estimates from visual input alone. No prior knowledge of the scene or the motion is necessary. The visual estimates can also be used in conjunction with information from other sources, such as a global positioning system, inertia sensors, wheel encoders, etc. The pose estimation method has been applied successfully to video from aerial, automotive, and handheld platforms. We focus on results obtained with a stereo head mounted on an autonomous ground vehicle. We give examples of camera trajectories estimated in real time purely from images over previously unseen distances (600 m) and periods of time.

This publication has 20 references indexed in Scilit: