The uncoupling of macromolecular synthesis from cell division in SV3T3 cells by glucocorticoids: The imposition of a G2 block

Abstract
Through a receptor‐mediated process glucocorticosteroids block cell division by 20–45 hours in SV40‐transformed 3T3 (SV3T3) mouse fibroblasts growing in a low calf serum (0.30% v/v) medium containing biotin. However, the rate of DNA synthesis, determined at various times after dexamethasone addition by the incorporation of radioactive thymidine into acid‐insoluble material, is not inhibited by this steroid as late as 66 hours. A modest decrease is observable by 91 hours. There is also no reduction in the uptake of exogenous thymidine into acid‐soluble cellular pools. Similarly, RNA synthesis and the uptake of radioactive uridine are not affected by the glucocorticoid up to 69 hours. Measurements of the amounts of cellular DNA (by the fluorescent dye, 4′,6‐diamidino‐2‐phenylindole) and protein revealed that both macromolecules are present in elevated quantities in steroid‐treated cells. (The constancy of the protein content in the nonproliferative stage suggests that protein synthesis and degradation are occurring at equal rates.) If the steroid is removed and fresh 10% calf serum medium added, cell division commences (even if nearly 90% of protein synthesis is inhibited by cycloheximide) as early as 45 minutes later such that by 2 hours the viable cell count increases by as much as 70%. Since the growth curve after recovery resembles a step function, it appears that the cells are partially synchronized by the glucocorticoid. These results demonstrate that the glucocorticoid cytostatic effect in SV3T3 cells is the result of a block not in G1, as previously thought, but in G2.