Abstract
Necking development and fracture strain of superplastic material under tensile load are analysed by introducing a model of cavity growth into the long wavelength approximation analysis which can describe the external neck development of specimens during deformation. The results show that both strain rate sensitivity m and cavity growth rate η have an important influence on the fracture strain of superplastic material. According to these results, a fracture diagram is presented in m–η coordinates, which is divided into three: a region in which material fails by macroscopic external necking, a region where cavity growth is predominant leading to fracture without pronounced external necking, and an intermediate region where both fracture modes occur. The prediction of fracture strain for various superplastic alloys exhibiting cavity growth during deformation is in good agreement with experimental results. The present analysis thus enables quantitative prediction of the effects of both strain rate sensitivity and cavity growth on superplastic fracture under uniaxial tension. MST/491