Wetting in Hydrophobic Nanochannels: A Challenge of Classical Capillarity

Abstract
We report an investigation of the water-hydrophobic interface in well-defined nanochannels (R approximately 2-4 nm). Wetting in these systems cannot be described by classical (macroscopic) capillary theory: (1) water occupies only a fraction ( approximately 60%) of the pore volume, and (2) the capillary pressures are approximately 60-90% greater than predicted by the Laplace equation. The results suggest the presence of approximately 0.6 nm layer of low-density fluid (vapor) separating water from the hydrophobic solid.