Functional acetylcholine receptor from Torpedo marmorata in planar membranes.
- 1 May 1980
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 77 (5) , 3052-3056
- https://doi.org/10.1073/pnas.77.5.3052
Abstract
Planar bilayer membranes containing functional acetylcholine receptor were formed from vesicles of Torpedo marmorata electric organ without extracting the acetylcholine receptor from its native environment. Native vesicles were transformed into monolayers which subsequently were apposed into planar bilayers. In the absence of agonists the membrane conductance was similar to that of lipid bilayers. Addition of carbamoylcholine or succinylcholine caused increased membrane conductance and this could be competitively inhibited by d-tubocurarine and suppressed by alpha-bungarotoxin. The amplitude of the conductance response was proportional to the number of alpha-bungarotoxin binding sites in the bilayers. Asymmetric membranes could be formed with the ligand binding sites on only one membrane surface. Desensitization of acetylcholine receptor was evident from equilibrium and kinetic data of the carbamoylcholine-activated conductance. Carbamoylcholine-induced membrane permeability was about 7 times higher for K+ and Na+ ions than for Cl-. At low levels of conductance, single-channel fluctuations of 20-25 pS in conductance and 1.3-msec lifetime were resolved in physiological saline containing carbamoylcholine. The ratio of observed channels to alpha-bungarotoxin sites present showed that a significant fraction of acetylcholine receptor in the membrane was functional. The quantitative aspects of the cation channel, the desensitization, and the ligand binding properties were in close agreement with established values. This transformation of natural acetylcholine receptor vesicles to planar bilayers conserves the essential properties of the in vivo receptor.Keywords
This publication has 27 references indexed in Scilit:
- Preparation of right-side-out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranesBiochemistry, 1979
- Agonist-mediated changes of the acetylcholine receptor in its membrane environmentJournal of Molecular Biology, 1978
- Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptorBiochemistry, 1978
- Interaction of the Acetylcholine (Nicotinic) Receptor Protein from Torpedo marmorata Electric Organ with Monolayers of Pure LipidsEuropean Journal of Biochemistry, 1978
- Swelling of brome mosaic virus as studied by intensity fluctuation spectroscopyJournal of Molecular Biology, 1977
- CONDUCTANCE FLUCTUATIONS AND IONIC PORES IN MEMBRANESAnnual Review of Biophysics and Bioengineering, 1977
- The Response to AcetylcholineScientific American, 1977
- Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organJournal of Molecular Biology, 1976
- EXPERIMENTAL MEMBRANES AND MECHANISMS OF BIOENERGY TRANSDUCTIONSAnnual Review of Biophysics and Bioengineering, 1976
- Single-channel currents recorded from membrane of denervated frog muscle fibresNature, 1976