GENETICS OF PHYSIOLOGICAL AND BEHAVIORAL RESISTANCE TO HOST FURANOCOUMARINS IN THE PARSNIP WEBWORM
- 1 October 1992
- Vol. 46 (5) , 1373-1384
- https://doi.org/10.1111/j.1558-5646.1992.tb01130.x
Abstract
Depressaria pastinacella, the parsnip webworm, feeds almost exclusively on the flowers and fruits of Pastinaca sativa, the wild parsnip. Resistance to webworms in wild parsnip populations is largely attributable to genetically based variation in furanocoumarin chemistry; by differentially reducing fruit set among chemical phenotypes, parsnip webworms may act as selective agents on wild parsnip populations. To determine whether wild parsnip chemistry can act as a selective agent on webworm populations, it is necessary to establish that resistance mechanisms in the webworm to furanocoumarins are genetically based. In this study, we estimated the amount of genetic variation in behavioral and physiological responses of webworms to parsnip furanocoumarins. Virtually no variation was found among webworm families for feeding preferences for diets varying as much as fourfold in furanocoumarin content. Nor was significant variation found for mean furanocoumarin intake over the assay period, except in one case, in which maternal effects may account for differences among families. In contrast, substantial familial variation existed for cytochrome P450–mediated metabolism of bergapten and xanthotoxin, two host furanocoumarins. The presence of additive genetic variation in metabolism, and the absence of such variation in discriminative feeding behavior, suggests that adaptation to changes in furanocoumarin chemistry, resulting either from changes in the distribution of chemical phenotypes in parsnip populations or from shifts to new chemically different host plants, is likely to be facilitated by physiological rather than behavioral means.Keywords
Funding Information
- National Science Foundation (88–18205)
This publication has 46 references indexed in Scilit:
- Adaptive significance of furanocoumarin diversity inPastinaca sativa (Apiaceae)Journal of Chemical Ecology, 1991
- Enzymatic Adaption in a Specialist Herbivore for Feeding on Furanocoumarin‐ Containing PlantsEcology, 1989
- Limonoids, Phenolics, and Furanocoumarins as Insect Antifeedants, Repellents, and Growth Inhibitory CompoundsPublished by American Chemical Society (ACS) ,1989
- Floral Development and Chemical Defense Allocation in Wild Parsnip (Pastinaca Sativa)Ecology, 1987
- Charge of the Light Brigade: Phototoxicity as a Defense Against InsectsPublished by American Chemical Society (ACS) ,1987
- Variation in seed furanocoumarin content within the wild parsnip (Pastinaca sativa)Phytochemistry, 1986
- Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicantJournal of Chemical Ecology, 1985
- The photoovicidal activity of plant components towardsDrosophila melanogasterCellular and Molecular Life Sciences, 1983
- Isolation of insect anti-feeding principles in Orixa japonica thunb.Agricultural and Biological Chemistry, 1977
- POPULAR AND PRACTICAL ENTOMOLOGY.: An Insect Enemy of the ParsnipThe Canadian Entomologist, 1916