Synthesis and crystallographic analysis of two rhizopuspepsin inhibitor complexes
- 1 September 1992
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 31 (35) , 8125-8141
- https://doi.org/10.1021/bi00150a004
Abstract
The crystal structures of rhizopuspepsin complexed with two oligopeptide inhibitors have been determined. CP-69,799, an azahomostatine dipeptide isostere, had previously been associated with a displacement of the C-terminal subdomain of endothiapepsin [Sali, A., Veerapandian, B., Cooper, J. B., Foundling, S. I., Hoover, D. J., & Blundell, T. L. (1989) EMBO J. 8, 2179-2188]. Here, we report the measurement of two data sets, one from crystals soaked in the inhibitor and the other from protein crystallized in the presence of excess inhibitor. In neither case is there any significant movement of the C-terminal subdomain of the rhizopuspepsin. The data suggest that the energy associated with any conformational change is small and is overcome by the crystal packing forces. The second inhibitor, a hydrated difluorostatone, was examined in a search for transition-state analogs that could cast further light on the mechanism of action [Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D., & Davies, D. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 7009-7013]. The gem-diol provides a set of contact distances with the enzyme that mimic the interactions with the tetrahedral intermediate of the substrate during catalysis. These data provide support for the suggestion that the polarization of the keto group of the peptide substrate is enhanced by a hydrogen bond from the OD1 of Asp 35 (Suguna et al., 1987).Keywords
This publication has 0 references indexed in Scilit: