Abstract
This report is on time transfer experiments using a Global Positioning System (GPS) receiver constructed using a commercial GPS "engine" and a standard PC. The receiver measures the time difference between the local clock and a 1 pps signal synchronized to GPS time using data from up to 8 satellites. The receiver also reports the difference between GPS time as estimated using each of the satellites being tracked and the composite output pulses that have a rate of 1 Hz (1 pps signal). These data can be used to construct the standard 13-minute tracks as defined in the BIPM standard; the same data also can be averaged in other ways that make better use of the multi-channel capabilities of the hardware. The 13-minute averages can be directly compared with standard time-transfer receivers using common-view analysis. The results of the tests suggest that the methods currently used for national and international time and frequency coordination should be re-examined, and an alternative approach based on multi-channel receivers is suggested that should be more flexible, simpler, and easier to operate than the current system.

This publication has 3 references indexed in Scilit: