Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations
- 1 April 2001
- journal article
- research article
- Published by Cold Spring Harbor Laboratory in RNA
- Vol. 7 (4) , 537-545
- https://doi.org/10.1017/s1355838201002461
Abstract
Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only ∼10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587–595; Curtis & Bartel, RNA, 2001, this issue, pp. 546–552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small.Keywords
This publication has 63 references indexed in Scilit:
- The Structural Basis of Ribosome Activity in Peptide Bond SynthesisScience, 2000
- The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å ResolutionScience, 2000
- Phosphorothioate Substitution Can Substantially Alter RNA ConformationBiochemistry, 2000
- Structure and function of the hairpin ribozymeJournal of Molecular Biology, 2000
- Thermodynamic Dissection of the Substrate−Ribozyme Interaction in the Hammerhead RibozymeBiochemistry, 1998
- A Core Folding Model for Catalysis by the Hammerhead Ribozyme Accounts for Its Extraordinary Sensitivity to Abasic MutationsBiochemistry, 1998
- Unusual Metal Ion Catalysis in an Acyl-Transferase RibozymeBiochemistry, 1998
- Hammerhead Ribozymes with a Faster Cleavage RateBiochemistry, 1997
- MECHANISTIC ASPECTS OF ENZYMATIC CATALYSIS: Lessons from Comparison of RNA and Protein EnzymesAnnual Review of Biochemistry, 1997
- Capturing the Structure of a Catalytic RNA Intermediate: The Hammerhead RibozymeScience, 1996