Airborne radar measurements of ocean wave spectra and wind speed during the grand banks ERS‐1 SAR wave experiment

Abstract
Measurements of ocean directional wave spectra, significant wave height, and wind speed over the Grand Banks of Newfoundland were made using the combined capabilities of the radar ocean wave spectrometer (ROWS) and scanning radar altimeter (SRA). The instruments were flown aboard the NASA P‐3A aircraft in support of the Grand Banks ERS‐1 Synthetic Aperture Radar (SAR) Wave Experiment. The NASA sensors use proven techniques, which differ greatly from SAR, for estimating the directional long‐wave spectrum; thus they provide a unique set of measurements for use in evaluating SAR performance. ROWS and SRA data are combined with spectra from the SAR aboard the Canadian Centre for Remote Sensing (CCRS) CV‐580 aircraft, the first‐generation Canadian Spectral Ocean Wave Model (CSOWM) hindcast, and other available in situ measurements to assess the ERS‐1 SAR's ability to correctly resolve wave field components along a 200‐ to 300‐km flight line for four separate satellite passes. Given the complex seas present on the Grand Banks, the complementary nature of viewing the sea spectrum from the perspectives of multiple sensors and a wave prediction model is apparent. The data intercomparisons show the ERS‐1 SAR to be meeting the expected goals for measuring swell, but the data also show evidence of this remote sensor's inability to detect the shorter waves travelling in the azimuth or along‐track direction. Example SAR spectra simulations are made using a non‐linear forward transform with ROWS measurements as input. Additionally, surface wind and wave height estimates made using the ROWS altimeter channel are presented. These data demonstrate the utility of operating the system in its new combined altimeter and spectrometer configuration.