Poisson and Gaussian approximation of weighted local empirical processes
- 1 October 1997
- journal article
- Published by Elsevier in Stochastic Processes and their Applications
- Vol. 70 (1) , 31-58
- https://doi.org/10.1016/s0304-4149(97)00055-0
Abstract
No abstract availableKeywords
This publication has 25 references indexed in Scilit:
- Rényi-type empirical processesJournal of Multivariate Analysis, 1992
- A tail empirical process approach to some nonstandard laws of the iterated logarithmJournal of Theoretical Probability, 1991
- Asymptotic Tail Behavior of Uniform Multivariate Empirical ProcessesThe Annals of Probability, 1990
- Nonstandard Functional Laws of the Iterated Logarithm for Tail Empirical and Quantile ProcessesThe Annals of Probability, 1990
- Correction: Probability Inequalities for Empirical Processes and a Law of the Iterated LogarithmThe Annals of Probability, 1987
- The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis ClassesThe Annals of Probability, 1987
- On the asymptotic distribution of weighted uniform empirical and quantile processes in the middle and on the tailsStochastic Processes and their Applications, 1985
- Probability Inequalities for Empirical Processes and a Law of the Iterated LogarithmThe Annals of Probability, 1984
- Approximation Thorems for Independent and Weakly Dependent Random VectorsThe Annals of Probability, 1979
- Probability Inequalities for the Sum of Independent Random VariablesJournal of the American Statistical Association, 1962