Effect of Substrate Structure on the Pre‐Steady‐State Kinetics of Oxidation by Liver Alcohol Dehydrogenase

Abstract
The oxidation of a series of primary alcohols by liver alcohol dehydrogenase has been studied under conditions of [S]o greater than [E]o using the stopped-flow method. A biphasic process, with exponential rise to a steady state, was observed for most of the alcohols and the rate constants for the transient phase were determined. No transient phase could be detected for 2-chloroethanol and 2-nitroethanol and steady-state measurements were made for these alcohols. The rate constants for the hydrogen transfer step were obtained from the pre-steady-state rate constants for the various alcohols and correlated with the Taft sigma constant. The (see article) value obtained (-1.8) is consistent with rate-limiting hydride transfer coupled with removal of the hydroxyl proton by a suitable basic group on the enzyme. A possible identity for this group is suggested.