Ferromagnetic resonance in ultrahigh vacuum of bcc Fe(001) films grown on Ag(001)

Abstract
Ferromagnetic resonance studies carried out in ultrahigh vacuum at 16.88 GHz on bcc Fe (001) films 5–14.2 monolayers (ML) thick grown on Ag (001) substrates indicate that an ultrathin Fe film 5 ML thick should be magnetized perpendicular to the specimen plane at room temperature. Covering the bare Fe specimens with Ag causes a substantial reduction in the uniaxial surface anisotropy for all Fe film thicknesses and would put the moment of a 5-ML film back into the plane. For a given Fe film thickness, the maximum obtainable uniaxial surface anisotropy depends on both the amount of oxygen contamination in the film and on the surface roughness.